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Abstract
The problem of sample selection complicates the process of drawing inference about
populations. Selective sampling arises in many real world situations when agents
such as doctors and customs officials search for targets with high values of a
characteristic. We propose a new method for estimating population characteristics
from these types of selected samples. We develop a model that captures key features
of the agent's sampling decision. We use a generalized method of moments with
instrumental variables and maximum likelihood to estimate the population
prevalence of the characteristic of interest and the agents' accuracy in identifying
targets. We apply this method to tuberculosis (TB), which is the leading infectious
disease cause of death worldwide. We use a national database of TB test data
from South Africa to examine testing for multidrug resistant TB (MDR‐TB).
Approximately one quarter of MDR‐TB cases was undiagnosed between 2004 and
2010. The official estimate of 2.5% is therefore too low, and MDR‐TB prevalence
is as high as 3.5%. Signal‐to‐noise ratios are estimated to be between 0.5 and 1.
Our approach is widely applicable because of the availability of routinely collected
data and abundance of potential instruments. Using routinely collected data to
monitor population prevalence can guide evidence‐based policy making.
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1 | INTRODUCTION

The problem of sample selection complicates the process of drawing inference about populations when the characteristic of
interest is only observed for a nonrandom subsample of the population. This type of selective sampling frequently arises in
many real world situations when agents are tasked with searching for targets with high values of a particular characteristic of
interest, for example, doctors decide to test certain patients for diseases based on observed symptoms or risk factors, tax
authorities select firms and individuals for audits based partly on the content of tax returns, customs officials investigate
suspicious travelers and shipments, police pull over erratic drivers, and universities and firms interview candidates with the
most promising resumes. In most of these cases, data are passively collected during the process, which provides an opportunity
to draw inference about these populations if the sample selection problem can be addressed. In this study, we propose a new
method for estimating population characteristics from a selected sample of observations drawn using the abovementioned
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“high‐value search” sampling mechanism, which is intended to identify population targets with high‐values of a particular
characteristic, not facilitate the estimation of specific population attributes.

When it is not possible to perfectly discern high‐value from low‐value targets or to select all targets in the population for
testing, agents must triage available resources to test only those targets deemed most likely to have high values of the
characteristic of interest. We develop a model that captures key features of the agent's decision making surrounding the
sampling of targets from the population. We then use a generalized method of moments (GMM) and maximum likelihood
(ML) to estimate (a) the prevalence of the characteristic of interest in the population and (b) the accuracy with which agents
are able to identify high‐value targets. In addition, we implement an instrumental variables method that leverages exogenous,
discontinuous changes in the availability of resources for testing. These types of sample selection adjustments are an attractive
alternative to random samples or testing the full population. Performing random sample surveys of the population can provide
unbiased estimates, but these types of surveys are infrequently conducted because they entail significant financial and time
costs. Testing or selecting all observations in the population is generally neither feasible nor cost‐effective.

We apply our method to the problem of estimating disease prevalence. Accurate information on disease prevalence is
essential for health policy making so that limited resources can be targeted globally and nationally to improve patient outcomes
and maximize overall population health. We focus on tuberculosis (TB), which kills more than 1.5 million people annually and
recently surpassed HIV to become the leading infectious disease cause of death in the world (WHO, 2015). Though multidrug
resistant TB (MDR‐TB) patients comprised an estimated 5% of TB cases notified in 2014, they accounted for 13% of TB deaths
and 20% of TB spending worldwide (WHO, 2015). However, only 12% of incident TB cases were tested for MDR‐TB.

We use 7 years of data from South Africa's National Health Laboratory Service (NHLS) database, which has wide national
coverage and includes individual patient TB test results. Our identification strategy leverages a series of national and local
policy changes that increasingly prioritized MDR‐TB as an urgent health concern to enable us to obtain precise estimates of
the prevalence of MDR‐TB. We find that between 16 and 27% of all MDR‐TB cases were undiagnosed between 2004 and
2010 in South Africa, which worsens patient outcomes, increases transmission, and leads to the development of additional drug
resistance. These estimates are validated against results from national surveillance surveys that use random sampling methods.

The contribution of this paper is twofold. First, we develop a new method for estimating population parameters from
nonrandom samples, which is widely applicable to many settings. It builds on the literature that addresses selection on
unobservables, which focuses on two approaches: instrumental variables (see Angrist & Imbens, 1995; Imbens & Angrist,
1994) or selection models (see Heckman, 1976). We demonstrate the ease with which this method can be applied to other
contexts because it uses existing data, is low cost, and can be quickly scaled up. The HIV literature has demonstrated the
importance of using statistical methods to adjust population and antenatal care prevalence estimates for representativeness
(see Bärnighausen, Bor, Wandira‐Kazibwe, & Canning, 2011; Clark & Houle, 2014; Hogan et al., 2012; McGovern et al.,
2015; Nyirenda et al., 2010; Sakarovitch et al., 2007); however, we develop more rigorous methods for routine data and are
the first to apply these types of methods to TB. Second, by applying the model to the case of MDR‐TB, we are the first to
demonstrate that approximately one quarter of MDR‐TB cases in South Africa went undiagnosed between 2004 and 2010,
which is a significant threat to TB control. Our method is a significant improvement over than the standard World Health
Organization method for estimating TB prevalence estimates that performs a crude adjustment to notified TB cases to account
for under‐detection (Glaziou, Sismanidis, Pretorius, Timimi, & Floyd, 2015; See Appendix A for details). Our method can be
employed in low‐ and middle‐income countries to cost‐effectively develop guidance for health policy making and ultimately
improve population health.

2 | MODEL

2.1 | Assumptions

Consider a population characterized by two variables x and y, which have the joint cumulative distribution function FX,Y (x, y)
such that E(y| x) is a monotonic function of x, scaled to be nondecreasing. This assumption is reasonable if x is a good predictor
of y such as when x is a symptom indicative of y or a risk factor with positive predictive value. It is particularly reasonable in
cases where the observable x variable is partly caused by the unobservable value of y, such as if the disease y produces a
symptom x. Suppose the analyst is interested in estimating the (unconditional) population mean of y denoted μ≡E(y), but
the analyst only has access to a nonrandom (i.e., selected or purposive) sample. This sample was drawn by agents with the
purpose of selecting target observations with the highest expected values of y (unobservable at the time of sampling) based
on values of x, which are observable to the agent but not necessarily to the analyst. Sampling reveals the values of y for the
sampled observations, but has an associated cost.
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We demonstrate how, providing there is sufficient exogenous variation in the proportion sampled and given
specific assumptions about stationarity regarding population characteristics and the agents' sampling algorithms, we can draw
inferences about both the sampling mechanism and the distribution of y in the population. Define θ as the proportion of the
population that is sampled, which is determined exogenously to the agent. Define x0 as the threshold value such that values
of x equal or greater than x0 are sampled: x≥x0 ¼ F−1

X 1−θ0ð Þ , where FX(x) is the cumulative distribution function of the
marginal distribution of x :FX(x)=FX , Y(x,∞). The analyst knows the value of θ and sampled values of y, but not necessarily
the values of x, so it is generally convenient to express the expected value of the sampled value of the outcome in terms of θ
rather than x:E(y| θ≤ θ0)=E(y| x≥ x0).

2.2 | Identifying the population mean

It is difficult to draw inferences about the population mean, μ, from E(y| θ≤ θ0) because a high value can be indicative of a high
μ but may also reflect an efficient sampling mechanism that identifies a higher share of high‐y observations in a low‐μ
population. The marginal sampling efficiency at a specific sampling share (i.e., the expected value of the outcome for
observations that are added to the sample when the sampling share increases infinitesimally) characterizes the nature of the
selective sampling and can be leveraged to infer information about the population mean (μ):

E yjθ0ð Þ≡ lim
∆θ→0

E yjθ0≤θ≤θ0 þ ∆θð Þ ¼ E yjθ≤θ0ð Þ þ θ0
dE yjθ≤θtð Þ

dθt
jθt¼θ0 :

Since θ0, E(y| θ≤ θt) and
dE yjθ≤θtð Þ

dθt
are observable to the analyst, we can also treat E(y| θ0) as observable. Exogenous variation

in θ across time or subgroups, denoted θt that have the same joint distribution of F(y, x) can be used to identify the marginal
sampling efficiency E(y| θ0), which can provide a plausible basis for drawing inferences about μ.

2.3 | Statistical inference

Provided that we observe outcomes for subsamples of the population that are selected using the same sampling method, it is

instructive to observe how E(y| θ≤ θt) varies with changes in θt. If
dE yjθ≤θtð Þ

dθt
¼ 0 , then this implies that μ=E(y|θ≤ θ0).

Intuitively, if an increase in the sample average of the outcome remains unchanged when the sampling share is increased, then
this suggests that the sampling occurs in a haphazard way that is unable to effectively distinguish between high‐y and low‐y
observations. Provided that all sampling shares between 0 and 1 are drawn based on a consistent mapping of characteristics
x to outcome y, then E(y| θ≤ θ0) provides an unbiased estimate of μ. On the other hand, if we can reject the hypothesis that
dE yjθ≤θtð Þ

dθt
¼ 0 in favor of dE yjθ≤θtð Þ

dθt
<0, then sampling can be concluded to occur based on informative values of x.The simplest

approach to point‐identifying μ is to express the observable subgroup means in the following general form as a function of
θt rather than as a joint function FX , Y(x, y):

E yjθ≤θtð Þ ¼ ∫ ∞
−∞

yP θ≤θtjyð Þf Y yð Þ
θt

dy;

and then to make distributional assumptions about P(θ≤ θt|y) and fY(y). When the outcome is binary, the conditional probability
simplifies to

P y ¼ 1jθ≤θtð Þ ¼ P θ≤θtjy ¼ 1ð Þμ
θt

;

which only requires assumptions about the distribution of P(θ≤ θt| y=1) in order to identify μ. If x is known to be partly
determined by the value of the outcome y, then expressing x in error form as x= β0+ β1y+ e where E(e| y) = 0 makes it possible
to write the observable sample share of the outcome as

P y ¼ 1jθ≤θtð Þ ¼
P e≥F−1

X 1−θtð Þ−β0−β1
! "

μ

θt
:

A distributional assumption for the error term e is therefore all that is required to identify both β≡ β0+ β1 and μ.
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3 | CONTEXT

TB has been the leading cause of death for over a decade in South Africa but the lack of reliable estimates of local TB
prevalence makes it difficult to allocate government resources efficiently (Statistics South Africa, 2013). Conventional
thinking about estimating MDR‐TB prevalence focuses on two avenues that are expensive and logistically complex:
increasing the frequency and coverage of TB prevalence studies and expanding access to high‐technology testing (e.g.,
Xpert) so that everyone can be tested for drug resistance (Cohen et al., 2008; Weyer et al., 2013). Theron et al.
(2015) calls for better use of existing data to inform tailored responses in the fight against TB; however, advances in this
area have been slow.

Official guidelines counsel clinicians to screen patients for TB based on symptoms (current cough, weight loss, night
sweats, and fever) that are nonspecific to TB (i.e., a noisy signal) and do not differ for patients with MDR‐TB (South Africa
Department of Health, 2013). Before Xpert drug resistance testing was widely available in South Africa, the guidelines
indicated that only those with the highest risk of MDR‐TB should be tested, which included people with TB symptoms who
had been previously treated for TB, patients who had failed TB treatment, and those who were known contacts of MDR‐TB
cases (South Africa Department of Health, 2013). Clinicians can ascertain a patient's approximate risk of MDR‐TB from a med-
ical history and physical exam to determine a patient's risk relative to other patients before ordering laboratory testing. The risk
factors are a good but imperfect signal of MDR‐TB so many cases could initially go undetected (Kendall, Fofana, & Dowdy,
2015).

4 | METHODS

4.1 | Data

We use data from South Africa's National Health Laboratory Service (NHLS) database on TB tests performed on patients aged
16–64 in public health facilities (hospitals and health clinics) for the period January 2004–September 2010, which includes
8,647,12 patients in 4,764 facilities. Our analysis sample comprises 2,190,780 TB‐positive test records, 249,779 of which
are tested for MDR‐TB. For TB and drug susceptibility testing, the data include the type of test performed, test result, testing
facility location, test date, and basic patient demographics. About 50.11% of the sample is female, and the median age is 37
(std. dev.: 11) with an interquartile range of 29–46 years. Race data are poorly recorded in laboratory data; however, of those
patients with information on race, 96.75% are Black African. We consider TB‐positive results from culture testing and smear
microscopy. Patient records are linked using unique patient identifiers created by the NHLS. Our dataset spans almost 7 years
(27 quarters) of frequent observations, which allows us to observe several sudden policy shifts that affected the inclination to
test for MDR‐TB. Figure 1 shows the number of patients who are TB‐positive, tested for MDR‐TB, and MDR‐TB‐positive
by quarter over time.

In some analyses, we use data only from new patients in order to limit the sample to one diagnostic episode per patient,
exclude treatment monitoring tests, and examine the sample without a history of TB testing (which in most cases implies

FIGURE 1 Number of patients who are
TB‐positive, tested for MDR‐TB, and MDR‐
TB‐positive by quarter over time. MDR‐
TB = multidrug resistant TB;
TB = tuberculosis [Colour figure can be
viewed at wileyonlinelibrary.com]
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without a history of TB treatment). Ethics approval was obtained from the University of Michigan Institutional Review Board
and the University of Cape Town Faculty Ethics in Research Committee.

4.2 | Identification strategy

We apply our model to the clinician's decision to perform drug susceptibility testing on a patient with suspected TB.
Clinicians search for MDR‐TB‐positive patients (i.e., high‐value targets) because a confirmed diagnosis is required to initiate
MDR‐TB patients onto treatment. Prior to 2011, MDR‐TB testing resources were highly limited, and guidelines did not
recommend testing all TB‐positive patients for MDR‐TB. In the absence of resources to test every patient for drug
resistance, the clinician's testing decision is based on their knowledge of the patient's risk factor profile and the policy
guidelines in place, subject to having time and resources available for drug resistance testing. Suppose the clinician observes
information about the patient's underlying propensity to have MDR‐TB in the form of a noisy signal (x) that includes
nonspecific symptoms such as cough and fever as well as the presence of risk factors. The clinician can use this observed
signal to determine a patient's relative likelihood of having MDR‐TB conditional on being TB‐positive. Clinicians will triage
patients and order drug resistance testing for the proportion θ of patients with the highest expected likelihood of having
MDR‐TB based on the noisy signal.

Variation in the proportion of individuals who can be tested for MDR‐TB, θ, is caused by fluctuations in the availability
of time, staff, testing materials, or other resources required for testing. Discontinuous changes in the availability of resources
for or attention towards MDR‐TB testing from period to period may occur due to stochastic events (e.g., stockouts and staff
strikes) or institutional changes (e.g., policy changes or new budget allocations). Exogenous changes in θ should not affect the
clinician's ability to rank patients (which is based on information and beliefs) or the underlying share of drug‐resistant
patients in the short run, but will influence MDR‐TB prevalence among those tested by shifting the characteristics of the
marginal tested patient.

If changes in the proportion of patients tested from period to period are exogenous, we can use the time dummies as
instrumental variables to identify the parameters of interest. However, we may be concerned that using variation over time
in the MDR‐TB testing rate as a source of identifying variation may reflect underlying transmission dynamics of the
epidemic that drive the true prevalence. We therefore also use instruments based on exogenous institutional variation in
MDR‐TB testing rates due to policy changes. The national policy changes are orthogonal to facility‐level variation in the
lagged proportion of patients tested and lagged MDR‐TB prevalence because their timing is neither determined by clinician
decision making nor by deviations from the underlying prevalence trend that were unmeasured during this period.
Intuitively, these instruments represent discontinuous changes in θ that cannot, in the short term, be correlated with relatively
smooth trends in prevalence or the signal‐to‐noise ratio that captures the clinician's ability to determine a patient's relative
likelihood of having MDR‐TB. In addition, the lag between a change in beliefs and the implementation of a new policy
supports instrument exogeneity.

Clinicians' beliefs about the relative importance of symptoms and risk factors in predicting MDR‐TB are unlikely to have
systematically changed during this period because there was little new information on the mapping between risk factors and
prevalence. In fact, an Institute of Medicine Forum noted that the true extent of the MDR‐TB epidemic was unknown due to
limited resources and inadequacies in existing health systems infrastructure (Institute of Medicine, 2011). Rising concern about
MDR‐TB shifts the proportion tested but should not affect patients' relative likelihood of having MDR‐TB.

We include the following policy instruments: a conference presentation of an extensively drug resistant TB (XDR) study
from South Africa at the Conference on Retroviruses and Opportunistic Infections (CROI) raised concern about drug‐resistance
(April 2006); the introduction of the National Strategic Plan on HIV, STIs, and TB (June 2006) and release of updated National
TB Guidelines (April 2009) brought increased attention and resources to TB; national Kick TB Campaign raises concern about
TB (March 2010). We also use an instrument for the facility‐level antiretroviral therapy (ART) availability and one for the local‐
area‐level ART availability to incorporate sub‐national exogenous variation in access to AIDS treatment due to the staggered
program rollout beginning in July 2004. With the possible exception of the ART rollout, these policy changes are unlikely to
change the composition of population of people present at health facilities or affect the ranking ability of clinicians and should
therefore serve as valid instruments.

4.3 | Estimation

In our empirical analysis, we assume that e in the equation x= β0+ β1y+ e follows a standard normal distribution e~nid(0, 1),
and we normalize β0 to 0. This is sufficient to identify the model parameters, the signal‐to‐noise ratio β= β1/σe and population

BURGER AND MCLAREN 5



mean μ, with observable sample variation in P(y=1| θ≤ θt) induced by different values of θt across time. We estimate the model
first assuming that μ is constant over time, and then allowing μ to take a quadratic function of time where the prevalence is
restricted to fall within the unit interval:

μt ¼ Φ μ0 þ μ1t þ μ2t
2! "
;

where Φ represents the standard normal cumulative distribution function and t is the time period. Estimation of this model is
complicated by the fact that x follows a mixed normal distribution, and its inverse will not generally have a closed‐form solution:

FX xð Þ ¼ μΦ x−βð Þ þ 1−μð ÞΦ xð Þ:

The inverse, F−1
X 1−θtð Þ, must therefore be approximated using either simulations or numerical approximation techniques.

We use two estimators to obtain point estimates for our model parameters: a GMM estimator and a ML estimator.

4.3.1 | Maximum likelihood estimation

The log‐likelihood of the model in Section 2 can be expressed as

logL μ; βð Þ ¼ ∑
N

i¼1
yit log

μ
θt

1−Φ F−1
X 1−θtð Þ−β

! "# $% &
þ 1−yitð Þ log 1−

μ
θt

1−Φ F−1
X 1−θtð Þ−β

! "# $% &' (
:

A Gaussian quadrature procedure is used to approximate the function F−1
X with a Hermite polynomial of order 7. Numerical

optimization techniques are then applied to find the values of the model parameters that maximize the likelihood function. In
estimating the model, we allow MDR‐TB prevalence to be either constant over time or to evolve as a quadratic function of time.
The starting parameter values are obtained after performing a series of grid searches to obtain the most promising parameter
space.

4.3.2 | Generalized method of moments estimation

We can define the model error term (i.e., the difference between observed and predicted outcomes) as

uit ¼ yit−P yit ¼ 1jθ≤θtð Þ:

The GMM estimator exploits the exogeneity assumption:

E uitjΩÞ ¼ 0;ð

where Ω represents all the information available to the clinician at the time of the testing decision. In the sample data, this
implies that

E zit yit−P yit ¼ 1jμ; β; θtð Þf g½ & ¼ 0;

where zit is a vector of instrumental variables, the elements of which are believed to be orthogonal to the individual's likelihood
of having MDR‐TB. If we define the GMM moment function as

git yit; zit; μ; β; θtð Þ ¼ zit yit−P yit ¼ 1jμ; β; θtð Þf g;

then the GMM estimator can be expressed as

argminμ;β ∑T
t¼1∑

N
i¼1git yit; zit; μ; β; θtð Þ

) *′
W ∑T

t¼1∑
N
i¼1git yit; zit; μ; β; θtð Þ

) *
;

where W is the weighting matrix. As with the ML estimator, we cannot calculate P(yit=1|μ, β, θt) analytically, but replace this
probability with its approximated counterpart using Gaussian quadrature methods with a Hermite polynomial of degree 7.

6 BURGER AND MCLAREN



4.3.3 | Tests of validity and robustness

We estimate MDR‐TB prevalence using ML as well as GMM with either time periods or policy changes as instruments. We
calculate estimates of the sampling efficiency (i.e., MDR‐TB prevalence among those tested) for the sample over the range
of the sampling proportion (θ), as well as the marginal sampling efficiency. To evaluate our method's goodness of fit, we
compare our the time pattern of MDR‐TB estimates to the observed pattern. We also report two pseudo‐R2 measures: (a) the
ratio of variances of predicted to observed MDR‐TB prevalence and (b) the squared correlation coefficient between predicted
and observed MDR‐TB prevalence. Asymptotically valid standard errors are calculated using the relevant parameter covariance
matrices. GMM estimates are clustered at the quarter‐by‐facility level.

5 | RESULTS

Figure 2 shows that the proportion of TB‐positive patients tested for MDR‐TB (•) and the proportion that test positive among
those tested (▴) are negatively correlated, both in long‐run trends and short‐term fluctuations. These patterns are consistent with
our theoretical model in which clinicians triage TB patients for testing based on the observed likelihood of being MDR‐TB. An
increase in the tested proportion (θ) implies extending the test to patients deemed less likely to have MDR‐TB by the clinicians,

in other words, the signal‐to‐noise ratio β>0 and dE yjθ≤θtð Þ
dθt

<0.
Figure 2 also shows that the percent of all TB‐positive patients who were diagnosed with MDR‐TB (▪) tracks the percent of

all TB‐positive patients who were tested for MDR‐TB (•) reasonably well over this period. As more TB‐positive patients
are tested for MDR‐TB, more MDR‐TB cases are found (consistent with our model in that θ is a limiting factor and the
signal‐to‐noise ratio β<∞) and the share of MDR‐TB tested patients who are MDR‐TB‐positive falls (β>0).

The percentage of all TB‐positive patients (based on smear, culture, or PCR) who were tested for MDR‐TB (•) was fairly
stable between 8 and 10% from 2004 to 2006, spiked up at the end of 2006 and again at the end of 2007 before steadily
increasing from the end of 2008 to 2010, when it reached 23%. The percentage of all TB‐positive patients who tested positive
for MDR‐TB (▪) was stable between 1 and 1.3% from 2004 to 2006 and rose up to 2% in 2010. MDR‐TB cases as a percentage
of all those tested for MDR‐TB (▴) was steady at around 12% until late 2007 when it rose to 15% and then steadily declined.

To further investigate the sampling mechanism, Figure 3 plots the sampling efficiency (solid line) as θ varies between
approximately 8% and 23% in different quarters of data. As expected, our results show that the prevalence in the selected sample

falls when θ rises (i.e., dE yjθ≤θtð Þ
dθt

<0). The dashed line represents the marginal sampling efficiency—the expected value of y for
observations that are added to the sample when θ increases infinitesimally. It declines up to approximately 18% of the TB+
patients being tested for MDR‐TB and then rises slightly at the highest values of θ.

We estimate that MDR‐TB prevalence in South Africa was approximately 3% over this period (Table 1), which is about 0.5
percentage points higher than the 2011 WHO estimate of 2.5% based on case notification rates (WHO, 2011). The range of our
estimates of 2.98 to 3.42 indicates that between 16 and 26% of all MDR‐TB cases went undetected during this period. The

FIGURE 2 Percent of TB‐positive cases
tested for MDR‐TB, percent of TB‐positive
cases MDR‐TB‐positive, and percent of
MDR‐TB‐tested cases MDR‐TB‐positive
from National Health Laboratory Service
data (scaled to two Y‐axes to show how the
testing rate and testing‐positive rate track
reasonably well over time). MDR‐
TB = multidrug resistant TB;
TB = tuberculosis [Colour figure can be
viewed at wileyonlinelibrary.com]
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signal‐to‐noise ratio (β) is approximately 1; therefore the information observed by clinicians is 50% noise. ML and both versions
of GMM‐IV methods produce very similar estimates of MDR‐TB prevalence (μ) and the signal‐to‐noise ratio (β) in the full
sample, which demonstrates the robustness of our methods. The one exception is the GMM‐IV method with time dummies
and clustered standard error, which was as high as 3.42% (Column 3). The standard errors for our estimates are small. The
policy change instruments are highly correlated with the testing proportion. In a linear regression of the testing share on the
policy instruments, the associated F test statistic is 200.05 when clustering by quarter and 5.15 when also controlling for a
quadratic time trend. Both our pseudo‐R2 measures are approximately 0.70 for most specifications.

When we relax the assumption that MDR‐TB prevalence is constant over time, the GMM‐IV estimates show that MDR‐TB
prevalence rose from 5.5% in 2004 to a peak of 5.8% from mid‐2005 to mid‐2006, and then fell to 4.4% by the end of 2010
(Figure 4, Table 1). The GMM estimates using time dummies and policy changes are very similar, indicating that changes in
testing resources over time were fairly exogenous. ML estimates were never more than 0.3 percentage points lower than the
GMM estimates. The signal‐to‐noise ratio ranges between 0.51 and 0.67. Estimation with an exponential decay functional form
(not shown) produced substantially lower pseudo‐R2 values than the quadratic and did not restrict prevalence to be between 0
and 1.

Figure 5 provides robust evidence of the validity of our estimation method because the time pattern of MDR‐TB prevalence
predicted by our model matches the observed MDR‐TB prevalence reasonably well in both the long and short run. This shows
that the majority of the variation in observed MDR‐TB prevalence can be explained by changes in the proportion of patients
tested alone. As expected, the match is worse where the observed prevalence has more peaks and troughs (2007–2010).

New patients and patients with a previous test result have different underlying signal‐to‐noise ratio and estimated MDR‐TB
prevalence. The ML results show a prevalence of 3.1% for new patients and 5.3% for repeat patients (Table 2). Though the
prevalence survey distinguishes between new and retreatment cases, which we are not able to do in our data, our results for
new patients are still close to prevalence survey estimates for new cases (2.1%, 95% CI [1.5%, 2.7%]) as are our results
for repeat patients compared to retreatment cases (4.6%, 95% CI [3.2%, 6.0%]; Centre for Tuberculosis, 2016). As expected,
the values for β reflect that clinicians have less information upon which to assess the risk profile of the new patients compared
to repeat patients. For the ML, β is estimated at 0.59 for new and 1.26 for repeat patients.

6 | DISCUSSION

Our results indicate that the assumptions about clinician behavior in our theoretical framework are consistent with the data.
Figure 2 shows that clinicians do prioritize testing patients that are more likely to be MDR‐TB positive, but that this
prioritization is imperfect. Figure 3 shows, as expected, that the sampling efficiency falls as a greater proportion of the
population is sampled. Our simple framework is able to match observed patterns in the data very closely (Figure 5). which
supports the validity of our approach. The fact that our GMM‐IV‐policy change estimates differ little from the GMM‐IV time
dummy estimates provides evidence to support our assumption that the constraint on diagnostic testing resources (θ) changes
exogenously over time. The fact that our GMM‐IV results change little with the addition of an instrument related to the rollout

FIGURE 3 Sampling efficiency and
marginal sampling efficiency at different
proportions of TB+ patients being tested for
MDR‐TB (θ). MDR‐TB = multidrug
resistant TB; TB = tuberculosis [Colour
figure can be viewed at wileyonlinelibrary.
com]
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TABLE 1 Estimated multidrug resistant TB prevalence (μ), quadratic specification coeffcients (μ0, μ1, and μ2), and signal‐to‐noise ratio (β)

Method: ML GMM GMM GMM GMM ML GMM GMM GMM GMM
Instruments: Time Time Policies Policies Time Time Policies Policies

1 2 3 4 5 6 7 8 9 10

μ 0.0305***
(0.0002)

0.0298***
(0.0013)

0.0342***
(0.0004)

0.0305***
(0.0016)

0.0301***
(0.0004)

μ0 −2.8758***
(0.0031)

−2.8779***
(0.1436)

−3.1033***
(0.0378)

−2.8395***
(0.3725)

−2.8269***
(0.0864)

μ1 0.0224***
(0.0002)

0.0241***
(0.0038)

0.0256***
(0.0010)

0.012**
(0.0053)

0.0094***
(0.0016)

μ2 −0.0011***
(0.0000)

−0.0012***
(0.0002)

−0.0011***
(0.0000)

−0.0008***
(0.0003)

−0.0007***
(0.0001)

β 1.0749***
(0.0003)

1.0891***
(0.0489)

0.9336***
(0.0117)

1.0716***
(0.0570)

1.0846***
(0.0142)

0.5192***
(0.0036)

0.5165***
(0.1003)

0.6687***
(0.0297)

0.5457**
(0.2638)

0.5421***
(0.0620)

Observations 262,845 262,845 262,853 262,850 262,842 262,845 262,845 262,853 262,850 262,842
Clustering No No Yes No Yes No No Yes No Yes
Pseudo R2 #1 0.694 0.699 0.529 0.691 0.703 0.725 0.798 0.841 0.799 0.737
Pseudo R2 #2 0.695 0.695 0.694 0.695 0.696 0.740 0.741 0.743 0.729 0.724
Log likelihood −90646.845 −90623.48
GMM criterion 0.00131 0.01626 0.00044 0.00780 0.00108 0.01410 0.00031 0.00670

Note. GMM = generalized method of moments; ML = maximum likelihood; TB, tuberculosis. Table presents coefficients and standard errors in parentheses. Sample includes TB‐positive patients ages 16–64 in public health facil-
ities from January 2004–September 2010. Policy instruments are defined in section 4.2.

*Significant at the 10% level.

**Significant at the 5% level.

***Significant at the 1% level.
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of ART, which occurred at the facility level and varied geographically and temporally, provides additional support that μ and β
are well‐identified. Our results do not exhibit characteristics indicative of weak instruments (Stock, Wright, & Yogo, 2002).

Our estimates of MDR‐TB prevalence are between 16 and 26% higher (0.5–1 percentage point) than theWHO 2010 estimate
of 2.5% (WHO, 2011). Because our data do not have full coverage of KwaZulu‐Natal, which likely has the highest MDR‐TB
burden, our estimates are a lower bound on the true national MDR‐TB prevalence. As expected, our results show that MDR‐
TB prevalence increased following the 2001–2002 prevalence study, which found an MDR‐TB prevalence of 2.9% overall
and 6.6% in the populationwith a history of TB treatment (Weyer, Brand, Lancaster, Levin, & Van derWalt, 2007). Extrapolating
our GMM‐IV‐policy change time‐varying prevalence results finds an MDR‐TB prevalence of 4.5% for 2001–2002 that is above
the CI of 2.4–3.5% from the prevalence survey, and 3.3% for 2012–2014 that falls within the CI of 2.0–3.6% of the estimate from
the 2012–2014 prevalence survey (Centre for Tuberculosis, 2016; Weyer et al., 2007). In light of these results, it is likely that
resource allocation to MDR‐TB between 2002 and 2016 was suboptimal due to under‐estimates of MDR‐TB prevalence. Addi-
tional resources should be therefore be allocated to the National Tuberculosis Program to increase efforts to control MDR‐TB.

FIGURE 4 Predicted time trends in
multidrug resistant tuberculosis (MDR‐TB)
prevalence (%) in South Africa estimated
from National Health Laboratory Service
data using generalized method of moments
(GMM) and maximum likelihood (ML)
estimation [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 Observed MDR‐TB
prevalence over time in National Health
Laboratory Service data compared to MDR‐
TB prevalence estimated from maximum
likelihood estimation. MDR‐
TB = multidrug resistant TB;
TB = tuberculosis [Colour figure can be
viewed at wileyonlinelibrary.com]
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From a health policy perspective, high rates of under‐detection of MDR‐TB highlight the need for additional diagnostic
resources and MDR‐TB treatment for new cases that are identified. In addition, our new MDR‐TB estimates should be used
as input parameters for TB modeling studies that inform health policy because MDR‐TB prevalence is often highly influential
in these models (see Acuna‐Villaorduna et al., 2008; Dowdy et al., 2014; Meyer‐Rath et al., 2012; Vassall et al., 2011). Finally,
more frequent prevalence surveys are needed to track the evolution of MDR‐TB prevalence over time.

Our study population is the same as for the TB prevalence studies: individuals who present at a public health facility are
determined to be at risk for TB and have TB testing performed. Both will underestimate the prevalence of TB and MDR‐TB
in the population to the degree that cases do not present to health facilities, or are overlooked as at‐risk by health workers, or
due to diagnostic tests not being perfectly sensitive. Though the data have been deduplicated using an algorithm devised by
the NHLS, poor patient linking across time may lead to double counting of MDR‐TB patients and bias our estimates upwards.
If clinicians order drug susceptibility testing only after treatment failure has been observed, then in the data clinicians will
appear to have better information (stronger signal value) than they actually do. In the absence of prevalence study
benchmarking, this would bias our estimates upwards.

7 | CONCLUSION

This study developed a novel econometric method for estimating disease prevalence from routinely collected data. We found
that approximately one fifth of MDR‐TB cases in South Africa were undiagnosed between 2004 and 2010 that contributed
to high transmission rates and high TB mortality rates. The empirical evidence supports the validity of our method. These
findings demonstrate the need for increased investment in early detection of MDR‐TB, such as the ongoing implementation
of Xpert technology, and more effective treatment, such as new antibiotics (WHO, 2014).

Our results underscore the importance of continuous surveillance that accounts for under‐detection rather than simply
relying on notification rates in order to ensure that the health system is diagnosing as many MDR‐TB cases as possible. Our
method is particularly attractive because it relies solely on existing routine data, which is widely available and inexpensive to
collect, and can be implemented using standard statistical software. In addition, the data requirements for our method are
minimal compared to alternative prediction or imputation methods since patient characteristics need not be observed by the
analyst. Notably, our method does not require that all patients or a random sample of patients be screened for the disease that
makes it a lower‐cost alternative to increasing the frequency of prevalence surveys.

Our approach to disease surveillance is simple and adaptable enough to be applied to many infectious and noninfectious
diseases in the developing world where prevalence data are lacking. This method can be applied to MDR‐TB where access
to Xpert drug resistance technology is limited, and to extensively drug resistant TB where Xpert is available but testing for
resistance to additional first‐ and second‐line drugs is less common.

Statistical analysis of routinely collected data is an inexpensive and effective way to monitor the prevalence of any number
of population characteristics. Our approach is widely applicable because of the minimal data requirements, wide availability of

TABLE 2 Estimated multidrug resistant TB prevalence (μ) and signal‐to‐noise ratio (β) for new patients and
repeat patients.

ML ML
New patients Repeat patients

μ 0.031*** 0.0533***
(0.0021) (0.0024)

θ 0.5902*** 1.2678***
(0.0565) (0.0536)

Observations 190,449 72,409
Pseudo R2 #1 0.264 0.386
Pseudo R2 #2 0.257 0.380
Log likelihood −47809.729 −37663.286

Note. ML = maximum likelihood; TB = tuberculosis. Table presents coefficients and standard errors in parentheses. Sample
includes TB‐positive patients ages 16–64 in public health facilities from January 2004–September 2010.

*Significant at the 10% level.

**Significant at the 5% level.

***Significant at the 1% level.
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routinely collected data, and abundance of policy changes to serve as valid instruments. Our straightforward, yet powerful,
approach can be used to evaluate the effectiveness not only of clinicians but also of tax authorities, customs officials, and
law enforcement. Ultimately, using routinely collected data to monitor population prevalence and agent effectiveness is a
high‐value strategy to guide evidence‐based policy making and implementation in resource‐limited settings.
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APPENDIX A

WHO TB ESTIMATION METHOD

In South Africa, the WHO estimates MDR‐TB prevalence based on “case notification data combined with expert opinion about

case detection gaps” (Glaziou et al., 2015). Incidence is estimated using the equation I ¼ f Nð Þ
1−g ; g∈ 0; 1½ Þ, where f(N) is a simple

function of case notifications (i.e., TB cases reported through the national notification system) and g is the detection gap, which
is obtained asking a small number of TB “experts” who work in TB programs to provide their “educated best guess of the
range.” The authors note limitations of this approach, including incomplete data and a lack of information on “vested interests”
when eliciting expert opinion.
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